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Classical and bilinear quadratures

Classical quadrature (approximates linear functionals):

∫
Ω

f (x) dµ =
[
w1 . . . wn

] f (x1)
...

f (xn)



Image from Wikimedia Commons

Bilinear quadrature (approximates bilinear forms):

∫
Ω

f (x)g(x) dµ =
[
f (y1) . . . f (ym)

] w11 . . . w1n

...
...

wm1 . . . wmn


g(x1)

...
g(xn)

 .
Useful for finite element/Galerkin method.

Previous work: Boland and Duris (1972), McGrath (1979), Gribble (1980), Chen
(2012)
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Advantages

f ’s and g ’s can belong to different spaces.

Can do any continuous bilinear form, e.g.

〈f , g〉H1 =

∫
Ω

fg + Du · Dv , 〈f , g〉 =

∫
Ω

fg +

∫
∂Ω

fg .

Very useful in Galerkin methods!

The right method for computing an orthogonal projection onto a fixed function
space.

Image courtesy of P.-O. Persson
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Looking for a bilinear quadrature

Choose L2 inner product on some finite-dim. function space X0 (e.g. polynomials)

Pick orthonormal basis {f1, . . . , fk} for X0. Solve for W = (wij) and x = {xi} such
that:

F (x)TWF (x) = Ik

where

F (x) :=

f1(x1) . . . fk(x1)
...

...
f1(xn) . . . fk(xn)


Approximate coefficients of ProjX0

(φ) using matvec F (x)TWφ(x)
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Nonlinear optimization

Find points x by minimizing an objective. Inspired by Chen, Rokhlin, and Yarvin
(1999), Bremer, Gimbutas, Rokhlin (2010), Xiao and Gimbutas (2010)

Choose orthonormal set {g1, . . . , gp} orthogonal to X0 and minimize the pairing with
X0.

G(x) =

g1(x1) . . . gp(x1)
...

...
g1(xn) . . . gp(xn)

 ,
then must solve

Find x,W minimizing ‖F (x)TWG(x)‖2 subject to F (x)TWF (x) = Ik

Don’t have access to derivatives. Use a quasi-Newton method (e.g. BFGS).

Need many initial guesses to get close to the minimum.
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Connection with familiar classical quadratures

Theorem

Given:

n-point bilinear quadrature on an interval,

exact for L2 inner products on Pn−1 × Pn−1,

minimized over degree n polynomials,

then W = diag(Gauss weights) and x are the Gauss points from Gaussian quadrature!

Theorem

Given:

n-point bilinear quadrature on [0, 2π], n odd,

exact for L2 inner products on T(n−1)/2 × T(n−1)/2,

minimized over span{sin n+1
2
x , cos n+1

2
x},

then W = diag(π
n
, 2π

n
, . . . , 2π

n
, π
n

) and x are uniformly spaced points on [0, 2π]!
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Two numerical results
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The nodes of 28-point bilinear quadratures on P6 × P6, minimized against P7, for both
the triangle and the square.
Notice symmetry!
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Accuracy

Compare with two very good 28-point classical quadratures on triangles.

Project onto P6.

Calculate relative 2-norm error in projection coefficients for random functions from
four different spaces.

P5 P6 Cauchy Trig
Dunavant (1985) 9.38e-14 3.97e-01 4.96e-05 9.12e-03

Xiao et al. (2010) 3.29e-15 2.73e-01 1.91e-05 4.76e-03

Bilinear 3.92e-15 3.99e-15 6.70e-06 1.71e-03
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Conclusions

Advantages:

Ideal for computing orthogonal projections.

Independent of domain or choice of functions.

Disadvantages

A bilinear quadrature does less than a general-purpose classical quadrature.

Expensive to construct; optimization is slow.
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