Theory and Computation for Bilinear Quadratures

Christopher A. Wong
University of California, Berkeley

15 March 2015

Classical and bilinear quadratures

Classical quadrature (approximates linear functionals):

$$
\int_{\Omega} f(x) d \mu=\left[\begin{array}{lll}
w_{1} & \ldots & w_{n}
\end{array}\right]\left[\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{n}\right)
\end{array}\right]
$$

Image from Wikimedia Commons

Classical and bilinear quadratures

Classical quadrature (approximates linear functionals):

$$
\int_{\Omega} f(x) d \mu=\left[\begin{array}{lll}
w_{1} & \ldots & w_{n}
\end{array}\right]\left[\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{n}\right)
\end{array}\right]
$$

Image from Wikimedia Commons
Bilinear quadrature (approximates bilinear forms):

$$
\int_{\Omega} f(x) g(x) d \mu=\left[\begin{array}{lll}
f\left(y_{1}\right) & \ldots & f\left(y_{m}\right)
\end{array}\right]\left[\begin{array}{ccc}
w_{11} & \ldots & w_{1 n} \\
\vdots & & \vdots \\
w_{m 1} & \ldots & w_{m n}
\end{array}\right]\left[\begin{array}{c}
g\left(x_{1}\right) \\
\vdots \\
g\left(x_{n}\right)
\end{array}\right] .
$$

Classical and bilinear quadratures

Classical quadrature (approximates linear functionals):

$$
\int_{\Omega} f(x) d \mu=\left[\begin{array}{lll}
w_{1} & \ldots & w_{n}
\end{array}\right]\left[\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{n}\right)
\end{array}\right]
$$

Image from Wikimedia Commons
Bilinear quadrature (approximates bilinear forms):

$$
\int_{\Omega} f(x) g(x) d \mu=\left[\begin{array}{lll}
f\left(y_{1}\right) & \ldots & f\left(y_{m}\right)
\end{array}\right]\left[\begin{array}{ccc}
w_{11} & \ldots & w_{1 n} \\
\vdots & & \vdots \\
w_{m 1} & \ldots & w_{m n}
\end{array}\right]\left[\begin{array}{c}
g\left(x_{1}\right) \\
\vdots \\
g\left(x_{n}\right)
\end{array}\right] .
$$

- Useful for finite element/Galerkin method.

Classical and bilinear quadratures

Classical quadrature (approximates linear functionals):

$$
\int_{\Omega} f(x) d \mu=\left[\begin{array}{lll}
w_{1} & \ldots & w_{n}
\end{array}\right]\left[\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{n}\right)
\end{array}\right]
$$

Image from Wikimedia Commons
Bilinear quadrature (approximates bilinear forms):

$$
\int_{\Omega} f(x) g(x) d \mu=\left[\begin{array}{lll}
f\left(y_{1}\right) & \ldots & f\left(y_{m}\right)
\end{array}\right]\left[\begin{array}{ccc}
w_{11} & \ldots & w_{1 n} \\
\vdots & & \vdots \\
w_{m 1} & \ldots & w_{m n}
\end{array}\right]\left[\begin{array}{c}
g\left(x_{1}\right) \\
\vdots \\
g\left(x_{n}\right)
\end{array}\right] .
$$

- Useful for finite element/Galerkin method.
- Previous work: Boland and Duris (1972), McGrath (1979), Gribble (1980), Chen (2012)

Advantages

- f 's and g 's can belong to different spaces.
- Can do any continuous bilinear form, e.g.

$$
\langle f, g\rangle_{H^{1}}=\int_{\Omega} f g+D u \cdot D v, \quad\langle f, g\rangle=\int_{\Omega} f g+\int_{\partial \Omega} f g .
$$

Very useful in Galerkin methods!

- The right method for computing an orthogonal projection onto a fixed function space.

Looking for a bilinear quadrature

- Choose L^{2} inner product on some finite-dim. function space X_{0} (e.g. polynomials)

Looking for a bilinear quadrature

- Choose L^{2} inner product on some finite-dim. function space X_{0} (e.g. polynomials)
- Pick orthonormal basis $\left\{f_{1}, \ldots, f_{k}\right\}$ for X_{0}. Solve for $W=\left(w_{i j}\right)$ and $\mathbf{x}=\left\{x_{i}\right\}$ such that:

$$
F(\mathrm{x})^{T} W F(\mathrm{x})=I_{k}
$$

where

$$
F(\mathbf{x}):=\left[\begin{array}{ccc}
f_{1}\left(x_{1}\right) & \ldots & f_{k}\left(x_{1}\right) \\
\vdots & & \vdots \\
f_{1}\left(x_{n}\right) & \ldots & f_{k}\left(x_{n}\right)
\end{array}\right]
$$

Looking for a bilinear quadrature

- Choose L^{2} inner product on some finite-dim. function space X_{0} (e.g. polynomials)
- Pick orthonormal basis $\left\{f_{1}, \ldots, f_{k}\right\}$ for X_{0}. Solve for $W=\left(w_{i j}\right)$ and $\mathbf{x}=\left\{x_{i}\right\}$ such that:

$$
F(\mathrm{x})^{T} W F(\mathrm{x})=I_{k}
$$

where

$$
F(\mathbf{x}):=\left[\begin{array}{ccc}
f_{1}\left(x_{1}\right) & \ldots & f_{k}\left(x_{1}\right) \\
\vdots & & \vdots \\
f_{1}\left(x_{n}\right) & \ldots & f_{k}\left(x_{n}\right)
\end{array}\right]
$$

- Approximate coefficients of $\operatorname{Proj}_{X_{0}}(\phi)$ using matvec $F(\mathbf{x})^{T} W \phi(\mathbf{x})$

Nonlinear optimization

- Find points \mathbf{x} by minimizing an objective. Inspired by Chen, Rokhlin, and Yarvin (1999), Bremer, Gimbutas, Rokhlin (2010), Xiao and Gimbutas (2010)

Nonlinear optimization

- Find points x by minimizing an objective. Inspired by Chen, Rokhlin, and Yarvin (1999), Bremer, Gimbutas, Rokhlin (2010), Xiao and Gimbutas (2010)
- Choose orthonormal set $\left\{g_{1}, \ldots, g_{\rho}\right\}$ orthogonal to X_{0} and minimize the pairing with X_{0}.

Nonlinear optimization

- Find points x by minimizing an objective. Inspired by Chen, Rokhlin, and Yarvin (1999), Bremer, Gimbutas, Rokhlin (2010), Xiao and Gimbutas (2010)
- Choose orthonormal set $\left\{g_{1}, \ldots, g_{\rho}\right\}$ orthogonal to X_{0} and minimize the pairing with X_{0}.

$$
G(\mathbf{x})=\left[\begin{array}{ccc}
g_{1}\left(x_{1}\right) & \ldots & g_{p}\left(x_{1}\right) \\
\vdots & & \vdots \\
g_{1}\left(x_{n}\right) & \ldots & g_{p}\left(x_{n}\right)
\end{array}\right],
$$

then must solve
Find \mathbf{x}, W minimizing $\left\|F(\mathbf{x})^{\top} W G(\mathbf{x})\right\|_{2}$ subject to $F(\mathbf{x})^{\top} W F(\mathbf{x})=I_{k}$

Nonlinear optimization

- Find points x by minimizing an objective. Inspired by Chen, Rokhlin, and Yarvin (1999), Bremer, Gimbutas, Rokhlin (2010), Xiao and Gimbutas (2010)
- Choose orthonormal set $\left\{g_{1}, \ldots, g_{\rho}\right\}$ orthogonal to X_{0} and minimize the pairing with X_{0}.

$$
G(\mathbf{x})=\left[\begin{array}{ccc}
g_{1}\left(x_{1}\right) & \ldots & g_{p}\left(x_{1}\right) \\
\vdots & & \vdots \\
g_{1}\left(x_{n}\right) & \ldots & g_{p}\left(x_{n}\right)
\end{array}\right],
$$

then must solve

$$
\text { Find } \mathbf{x}, W \text { minimizing }\left\|F(\mathbf{x})^{\top} W G(\mathbf{x})\right\|_{2} \text { subject to } F(\mathbf{x})^{T} W F(\mathbf{x})=I_{k}
$$

- Don't have access to derivatives. Use a quasi-Newton method (e.g. BFGS).
- Need many initial guesses to get close to the minimum.

Connection with familiar classical quadratures

Theorem

Given:

- n-point bilinear quadrature on an interval,
- exact for L^{2} inner products on $\mathbb{P}_{n-1} \times \mathbb{P}_{n-1}$,
- minimized over degree n polynomials, then $W=\operatorname{diag}($ Gauss weights) and \mathbf{x} are the Gauss points from Gaussian quadrature!

Connection with familiar classical quadratures

Theorem

Given:

- n-point bilinear quadrature on an interval,
- exact for L^{2} inner products on $\mathbb{P}_{n-1} \times \mathbb{P}_{n-1}$,
- minimized over degree n polynomials, then $W=\operatorname{diag}($ Gauss weights) and \mathbf{x} are the Gauss points from Gaussian quadrature!

Theorem

Given:

- n-point bilinear quadrature on $[0,2 \pi]$, n odd,
- exact for L^{2} inner products on $T_{(n-1) / 2} \times T_{(n-1) / 2}$,
- minimized over $\operatorname{span}\left\{\sin \frac{n+1}{2} x, \cos \frac{n+1}{2} x\right\}$,
then $W=\operatorname{diag}\left(\frac{\pi}{n}, \frac{2 \pi}{n}, \ldots, \frac{2 \pi}{n}, \frac{\pi}{n}\right)$ and \mathbf{x} are uniformly spaced points on $[0,2 \pi]$!

Two numerical results

The nodes of 28 -point bilinear quadratures on $\mathbb{P}_{6} \times \mathbb{P}_{6}$, minimized against \mathbb{P}_{7}, for both the triangle and the square.
Notice symmetry!

Accuracy

- Compare with two very good 28 -point classical quadratures on triangles.
- Project onto \mathbb{P}_{6}.
- Calculate relative 2-norm error in projection coefficients for random functions from four different spaces.

	\mathbb{P}_{5}	\mathbb{P}_{6}	Cauchy	Trig
Dunavant (1985)	$9.38 \mathrm{e}-14$	$3.97 \mathrm{e}-01$	$4.96 \mathrm{e}-05$	$9.12 \mathrm{e}-03$
Xiao et al. (2010)	$3.29 \mathrm{e}-15$	$2.73 \mathrm{e}-01$	$1.91 \mathrm{e}-05$	$4.76 \mathrm{e}-03$
Bilinear	$3.92 \mathrm{e}-15$	$3.99 \mathrm{e}-15$	$6.70 \mathrm{e}-06$	$1.71 \mathrm{e}-03$

Conclusions

Advantages:

- Ideal for computing orthogonal projections.
- Independent of domain or choice of functions.

Conclusions

Advantages:

- Ideal for computing orthogonal projections.
- Independent of domain or choice of functions.

Disadvantages

- A bilinear quadrature does less than a general-purpose classical quadrature.
- Expensive to construct; optimization is slow.

