Theory and Computation for Bilinear Quadratures

Christopher A. Wong

University of California, Berkeley

15 March 2015

Research supported by NSF, AFOSR, and SIAM

Classical quadrature (approximates linear functionals):

Image from Wikimedia Commons

Classical quadrature (approximates linear functionals):

$$\int_{\Omega} f(x) d\mu = \begin{bmatrix} w_1 & \dots & w_n \end{bmatrix} \begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \qquad \boxed{\begin{array}{c} \\ a \end{array}} b$$

.

Bilinear quadrature (approximates bilinear forms):

$$\int_{\Omega} f(x)g(x) d\mu = \begin{bmatrix} f(y_1) & \dots & f(y_m) \end{bmatrix} \begin{bmatrix} w_{11} & \dots & w_{1n} \\ \vdots & & \vdots \\ w_{m1} & \dots & w_{mn} \end{bmatrix} \begin{bmatrix} g(x_1) \\ \vdots \\ g(x_n) \end{bmatrix}$$

Image from Wikimedia Commons

Classical quadrature (approximates linear functionals):

.

Image from Wikimedia Commons

Bilinear quadrature (approximates bilinear forms):

$$\int_{\Omega} f(x)g(x) d\mu = \begin{bmatrix} f(y_1) & \dots & f(y_m) \end{bmatrix} \begin{bmatrix} w_{11} & \dots & w_{1n} \\ \vdots & & \vdots \\ w_{m1} & \dots & w_{mn} \end{bmatrix} \begin{bmatrix} g(x_1) \\ \vdots \\ g(x_n) \end{bmatrix}$$

• Useful for finite element/Galerkin method.

イロト イヨト イヨト イヨト

Classical quadrature (approximates linear functionals):

.

Image from Wikimedia Commons

Bilinear quadrature (approximates bilinear forms):

$$\int_{\Omega} f(x)g(x) d\mu = \begin{bmatrix} f(y_1) & \dots & f(y_m) \end{bmatrix} \begin{bmatrix} w_{11} & \dots & w_{1n} \\ \vdots & & \vdots \\ w_{m1} & \dots & w_{mn} \end{bmatrix} \begin{bmatrix} g(x_1) \\ \vdots \\ g(x_n) \end{bmatrix}$$

- Useful for finite element/Galerkin method.
- Previous work: Boland and Duris (1972), McGrath (1979), Gribble (1980), Chen (2012)

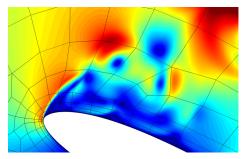
イロト イヨト イヨト イヨト

Advantages

- f's and g's can belong to different spaces.
- Can do any continuous bilinear form, e.g.

$$\langle f,g
angle_{H^1} = \int_\Omega fg + Du \cdot Dv, \quad \langle f,g
angle = \int_\Omega fg + \int_{\partial\Omega} fg.$$

Very useful in Galerkin methods!



• The **right method** for computing an orthogonal projection onto a fixed function space.

Image courtesy of P.-O. Persson

Looking for a bilinear quadrature

• Choose L^2 inner product on some finite-dim. function space X_0 (e.g. polynomials)

Looking for a bilinear quadrature

- Choose L^2 inner product on some finite-dim. function space X_0 (e.g. polynomials)
- Pick orthonormal basis $\{f_1, \ldots, f_k\}$ for X_0 . Solve for $W = (w_{ij})$ and $\mathbf{x} = \{x_i\}$ such that:

$$F(\mathbf{x})^T WF(\mathbf{x}) = I_k$$

where

$$F(\mathbf{x}) := \begin{bmatrix} f_1(x_1) & \dots & f_k(x_1) \\ \vdots & & \vdots \\ f_1(x_n) & \dots & f_k(x_n) \end{bmatrix}$$

Looking for a bilinear quadrature

- Choose L^2 inner product on some finite-dim. function space X_0 (e.g. polynomials)
- Pick orthonormal basis $\{f_1, \ldots, f_k\}$ for X_0 . Solve for $W = (w_{ij})$ and $\mathbf{x} = \{x_i\}$ such that:

$$F(\mathbf{x})^T WF(\mathbf{x}) = I_k$$

where

$$F(\mathbf{x}) := \begin{bmatrix} f_1(x_1) & \dots & f_k(x_1) \\ \vdots & & \vdots \\ f_1(x_n) & \dots & f_k(x_n) \end{bmatrix}$$

• Approximate coefficients of $\operatorname{Proj}_{X_0}(\phi)$ using matvec $F(\mathbf{x})^T W \phi(\mathbf{x})$

イロン イヨン イヨン イヨン

• Find points x by minimizing an objective. Inspired by Chen, Rokhlin, and Yarvin (1999), Bremer, Gimbutas, Rokhlin (2010), Xiao and Gimbutas (2010)

- Find points **x** by minimizing an objective. Inspired by Chen, Rokhlin, and Yarvin (1999), Bremer, Gimbutas, Rokhlin (2010), Xiao and Gimbutas (2010)
- Choose orthonormal set $\{g_1, \ldots, g_p\}$ orthogonal to X_0 and minimize the pairing with X_0 .

- Find points x by minimizing an objective. Inspired by Chen, Rokhlin, and Yarvin (1999), Bremer, Gimbutas, Rokhlin (2010), Xiao and Gimbutas (2010)
- Choose orthonormal set $\{g_1, \ldots, g_p\}$ orthogonal to X_0 and minimize the pairing with X_0 .

$$G(\mathbf{x}) = \begin{bmatrix} g_1(x_1) & \dots & g_p(x_1) \\ \vdots & & \vdots \\ g_1(x_n) & \dots & g_p(x_n) \end{bmatrix}$$

then must solve

Find \mathbf{x} , W minimizing $\|F(\mathbf{x})^T WG(\mathbf{x})\|_2$ subject to $F(\mathbf{x})^T WF(\mathbf{x}) = I_k$

- Find points x by minimizing an objective. Inspired by Chen, Rokhlin, and Yarvin (1999), Bremer, Gimbutas, Rokhlin (2010), Xiao and Gimbutas (2010)
- Choose orthonormal set {g₁,..., g_p} orthogonal to X₀ and minimize the pairing with X₀.

$$G(\mathbf{x}) = \begin{bmatrix} g_1(x_1) & \dots & g_p(x_1) \\ \vdots & & \vdots \\ g_1(x_n) & \dots & g_p(x_n) \end{bmatrix}$$

then must solve

Find \mathbf{x} , W minimizing $||F(\mathbf{x})^T WG(\mathbf{x})||_2$ subject to $F(\mathbf{x})^T WF(\mathbf{x}) = I_k$

- Don't have access to derivatives. Use a quasi-Newton method (e.g. BFGS).
- Need many initial guesses to get close to the minimum.

Connection with familiar classical quadratures

Theorem
Given:
 n-point bilinear quadrature on an interval,
• exact for L^2 inner products on $\mathbb{P}_{n-1} \times \mathbb{P}_{n-1}$,
 minimized over degree n polynomials,
then $W = \text{diag}(Gauss weights)$ and x are the Gauss points from Gaussian guadrature!

イロン イロン イヨン イヨン

Connection with familiar classical quadratures

Theorem Given: • *n*-point bilinear quadrature on an interval, • exact for L^2 inner products on $\mathbb{P}_{n-1} \times \mathbb{P}_{n-1}$, • minimized over degree *n* polynomials, then W = diag(Gauss weights) and **x** are the Gauss points from Gaussian quadrature!

Theorem

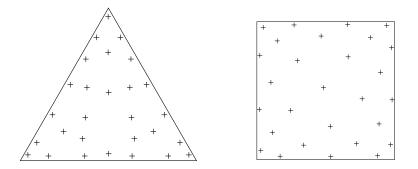
Given:

- *n*-point bilinear quadrature on $[0, 2\pi]$, *n* odd,
- exact for L^2 inner products on $T_{(n-1)/2} \times T_{(n-1)/2},$
- minimized over span{ $\sin \frac{n+1}{2}x, \cos \frac{n+1}{2}x$ },

then $W = \text{diag}(\frac{\pi}{n}, \frac{2\pi}{n}, \dots, \frac{2\pi}{n}, \frac{\pi}{n})$ and **x** are uniformly spaced points on $[0, 2\pi]!$

イロト イポト イヨト イヨト

Two numerical results



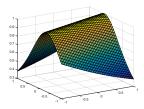
The nodes of 28-point bilinear quadratures on $\mathbb{P}_6 \times \mathbb{P}_6$, minimized against \mathbb{P}_7 , for both the triangle and the square. Notice symmetry!

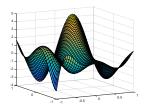
<ロト <回ト < 回ト

Accuracy

- Compare with two very good 28-point classical quadratures on triangles.
- Project onto \mathbb{P}_6 .
- Calculate relative 2-norm error in projection coefficients for random functions from four different spaces.

	\mathbb{P}_5	\mathbb{P}_6	Cauchy	Trig
Dunavant (1985)	9.38e-14	3.97e-01	4.96e-05	9.12e-03
Xiao et al. (2010)	3.29e-15	2.73e-01	1.91e-05	4.76e-03
Bilinear	3.92e-15	3.99e-15	6.70e-06	1.71e-03





A D > A B > A B > A

Conclusions

Advantages:

- Ideal for computing orthogonal projections.
- Independent of domain or choice of functions.

Conclusions

Advantages:

- Ideal for computing orthogonal projections.
- Independent of domain or choice of functions.

Disadvantages

- A bilinear quadrature does less than a general-purpose classical quadrature.
- Expensive to construct; optimization is slow.

イロト イヨト イヨト イヨト