Going beyond HSS: Investigating the structure of impedance operators for high frequency Helmholtz problems

Christopher A. Wong

with Maarten V. de Hoop and Xiao Liu

Rice University

28 April 2017

C. Wong (Rice University)

Structure of impedance operators

28 April 2017 1 / 21

Hierarchical elliptic solvers

- Analysis-based variant of nested dissection direct solvers.
- Itl: Barnett, Gillman, Martinsson (2013), RtR: de Hoop, Liu, Xia
- Solve and merge local elliptic problems

 $A_i u = f_i$ on Ω_i

• Complexity: $O(n^{3/2})$ in 2D, $O(n^2)$ in 3D.

Boundary operators

Robin-to-Robin operator (RtR) *R* maps one boundary condition to another:

 $\alpha u + \beta \partial_n u \mapsto \sigma u + \tau \partial_n u.$

Impedance: $\beta = \tau = 1$, $\alpha = -i\eta$, $\sigma = i\eta$ $R_1\begin{bmatrix}g_1\\\tilde{g}_1\end{bmatrix}=\begin{bmatrix}h_1\\\tilde{h}_1\end{bmatrix},$ Ω_1 Ω_2 $R_2 \begin{bmatrix} g_2 \\ \tilde{g}_2 \end{bmatrix} = \begin{bmatrix} h_2 \\ \tilde{h}_2 \end{bmatrix}$ Construct $R \begin{vmatrix} g_1 \\ g_2 \end{vmatrix} = \begin{vmatrix} h_1 \\ h_2 \end{vmatrix}$

HSS compression

- Descended from multipole methods (Greengard, Rokhlin)
- HSS matrix compression: Chandrasekaran, Gu, Li, Pals, Xia, and others
- Accelerate elliptic direct solvers.

HSS Compression

G(x, y) has ϵ -rank r on $X \times Y$ if there are functions f_i, g_i such that

$$\left|G(x,y)-\sum_{i=1}^r f_i(x)g_i(y)\right|\leq\epsilon.$$

for all $x \in X, y \in Y$.

- Low frequency: r grows slowly (if at all!) as X, Y grow
- High frequency: r grows with sizes of X, Y.
- Low-rank block ⇔ too many points

 Butterfly algorithm (Michielssen, Rokhlin, O'Neil, Candes, Ying, Demanet, others); connections to FFT

- Interactions with $\rho(X)\rho(Y) = O(1/k)$ are low-rank.
- Oscillatory matrix with frequency k can be applied in $O(r^2k^d \log k)$ flops.
- Multi-level butterfly: treat off-diagonal blocks as butterfly compressible

Oscillatory integral kernel

$$G(\mathbf{x}, \mathbf{y}) = \exp(ik\phi(\mathbf{x}, \mathbf{y})),$$

where ϕ is analytic. Expand about (x_0, y_0) :

$$G(\mathbf{x}, \mathbf{y}) = \exp(ik\phi(x_0, y_0))\exp(ik(\phi(\mathbf{x}, y_0) - \phi(x_0, y_0))) \cdot \dots \\ \cdot \exp(ikR(\mathbf{x}, \mathbf{y}))\exp(ik(\phi(x_0, \mathbf{y}) - \phi(x_0, y_0))),$$

with R(x, y) the 2nd-order Taylor remainder. For regions X, Y with centers x_0, y_0 :

$$|R(\mathbf{x},\mathbf{y})| \leq \|\partial_{\mathbf{x}}\partial_{\mathbf{y}}\phi\|_{\infty}\rho(\mathbf{X})\rho(\mathbf{Y}).$$

•
$$R(x,y) = O(1/k) \Rightarrow \exp(ikR(x,y))$$
 expands as

$$\exp(ikR(x,y)) \approx \sum_{j=1}^{r_1} \frac{i^j}{j!} k^j R(x,y)^j$$

•
$$\phi(x,y)$$
 analytic $\Rightarrow R(x,y)$ analytic

• Insert Taylor expansion of R(x, y).

-

- Step 1: Compress interaction of a few sources with many targets
- Step 2: Combine sources and split targets
- Step 3: Determine interaction of all sources on a few targets

Can view as a factorization:

$$A = PB_1 \dots B_L Q$$

2D Helmholtz single-layer potential on S^1 :

$$Su(x) = \frac{i}{4} \int_{S^1} H_0^{(1)}(|x-y|)u(y)ds(y)$$

Interaction between separated regions X, Y:

Numerical rank of $S_{X \times Y}$ as a function of k:

Ranks of all subblocks with $\rho(X)\rho(Y) = O(1/k)$:

C. Wong (Rice University)

28 April 2017 13 / 21

Impedance operators

Constant coefficient on square domain, more complicated structure:

C. Wong (Rice University)

Impedance operators

Marmousi model (variable coefficient), even more complicated:

Impedance operators Upper left block:

C. Wong (Rice University)

Constant coefficient operator, off-diagonal blocks:

Constant coefficient operator, separated blocks:

Variable coefficient operator, off-diagonal blocks:

Variable coefficient operator, separated blocks:

Outlook

- Multiscale compressibility experimentally appears possible.
- Factorization/inversion is a big open question.
- Michielssen et al. (2013 present): LU-based solver for Helmholtz kernels. Can it be extended?
- ULV-type factorizations for multi-level butterfly?
- Alternatives to butterfly?